Photon management for augmented photosynthesis

نویسندگان

  • Matthew D Ooms
  • Cao Thang Dinh
  • Edward H Sargent
  • David Sinton
چکیده

P hotosynthesis is the model process for storing solar energy in complex chemical bonds. Annually it results in the fixation of upwards of 120 billion tons of carbon through terrestrial plants alone1, and nearly as much again inside the world’s oceans2. Humankind has sought over decades to mimic this process synthetically; however, to date, photosynthesis remains the only option for the sustainable production of many complex chemicals. In particular photosynthesis provides a sustainable path for the synthesis of high-energy-density liquid biofuels—an important priority in a world increasingly stressed by anthropogenic CO2. For these reasons, cultivation of photosynthetic plants and microalgae for biofuel production has attracted great interest. Biofuel production from microalgae can follow several routes. Biodiesel can be produced by reacting triacylglycerols (a type of cellular energy storage lipid) with an alcohol, such as methanol, to produce fatty acid methyl esters (biodiesel), a process known as transesterification. For biodiesel production green algae and diatoms show particular promise as feedstocks owing to their high lipid concentration which can exceed 50% of the cell’s dry-weight3. In addition, microalgal carbohydrates can be converted to biomethane or biohydrogen, through anaerobic digestion or to bioethanol through fermentation4. Alternatively, raw biomass in its entirety can be converted into biocrude oil using thermochemical conversion processes such as pyrolysis or hydrothermal liquifaction4. To avoid harvesting and processing of raw biomass for biofuel extraction, direct photobiological production of hydrogen is possible with certain species, such as Chlamydomonas reinhardtii5. With genetic modifications, particularly of cyanobacteria, other biofuels and biofuel precursors can similarly be evolved including isobutyraldehyde6, isobutanol6, 1-butanol7 and isoprene8. Bio-electricity production in microalgal bio-photovoltaic cells has also been demonstrated9,10. This suite of microalgal energy generation options is a distinct advantage of photosynthesis over other solar energy conversion techniques which are DOI: 10.1038/ncomms12699 OPEN

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diurnal Variations of Gas Exchange Characteristics in Leaves of Anise Hyssop (Agastache foeniculum) under Normal, Drought Stress and Recovery Conditions

 Net photosynthesis rate (Pn), stomatal conductance (gs) and transpiration rate (E) of anise hyssop were measured during the four cloudless days, in reference to diurnal fluctuations of leaf temperature (Tleaf), leaf vapor pressure deficit (VPD leaf) and photosynthetic photon flux density (PPFD) in well watered (WW), stressed (S) and recovered (R) plants. An analysis of measured data showed tha...

متن کامل

Photocontrol of the Functional Coupling between Photosynthesis and Stomatal Conductance in the Intact Leaf : Blue Light and Par-Dependent Photosystems in Guard Cells.

The photocontrol of the functional coupling between photosynthesis and stomatal conductance in the leaf was investigated in gas exchange experiments using monochromatic light provided by lasers. Net photosynthesis and stomatal conductance were measured in attached leaves of Malva parviflora L. as a function of photon irradiance at 457.9 and 640.0 nanometers.Photosynthetic rates and quantum yiel...

متن کامل

Nonsteady-State Photosynthesis following an Increase in Photon Flux Density (PFD) : Effects of Magnitude and Duration of Initial PFD.

The response of photosynthesis to an increase in photon flux density (PFD) from low to higher PFD was investigated using spinach (Spinacia oleracea L.). The time-course for this response was qualitatively similar to that observed for a dark-to-high-PFD transition, showing an initial, rapid increase in photosynthesis over the first minute or so, followed by a slower increase lasting 5 to 10 minu...

متن کامل

Light intensity effects on some molecular and biochemical characteristics of Dunaliella salina. Leila Zarandi-Miandoab1,3, Mohammad-Amin Hejazi2*, Mohammad-Bager Bagherieh-Najjar1, Nader Chaparzadeh3

To gain a better understanding of molecular and biochemical events involved in light intensity adaptations of Dunaliella salina, we studied the expression of phytoen synthase (psy) gene; pigments, carbohydrates, proteins and lipids accumulation under two light intensities. The cells were pre-cultured under 50 µmol photon m-2s-1 light intensity and then transferred to two different light intensi...

متن کامل

High Light-Induced Reduction and Low Light-Enhanced Recovery of Photon Yield in Triazine-Resistant Brassica napus L.

Triazine-resistant and -susceptible Brassica napus L. plants grown under low photon flux density (PFD) have previously been shown to exhibit a similar photon yield. In contrast, high PFD-grown resistant plants have a lower photon yield than high PFD-grown susceptible plants (JJ Hart, A Stemler [1990] Plant Physiol 94: 1295-1300). In this work we tested the hypothesis that high PFD can induce a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016